General Relativity

Re-Take Exam
1/12/2014

Please write your first and last name and your student number on the first page.

Problem 1

Consider the 2-dimensional metric

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}
$$

a) Compute the Christoffel symbols
b) Taking into account that in 2 dimensions there is only one independent component of the Riemann tensor, compute the Riemann tensor.
c) Consider the vector field V^{μ} with compontents $V^{r}=\cos \theta$ and $V^{\theta}=\frac{1}{r} \sin \theta$. Compute its covariant derivative using the metric mentioned above.

Problem 2

Consider the Schwarzschild metric

$$
d s^{2}=\left(1-\frac{2 G M}{r}\right) d t^{2}-\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Calculate the escape 4 -velocity from this gravitational field. This means: we shoot radially outwards a massive particle from some initial position $r=r_{0}$, with an initial 4 -velocity u^{μ}. For any given r_{0} we want to find the minimum value of u^{μ} (more precisely, the smallest value of the radial component of u^{μ}) so that the particle asymptotically reaches infinity with zero spatial velocity. Notice what happens when r_{0} approaches the horizon.

Problem 3

Consider the metric

$$
\begin{equation*}
d s^{2}=\left(1-r^{2}\right) d t-\frac{d r^{2}}{1-r^{2}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{1}
\end{equation*}
$$

which is a solution of Einstein equation with positive cosmological constant.
i) Consider a massive particle undergoing inertial motion in this metric and derive its equations of motion.

From this point on, we will be mostly concerned with motion in the (t, r) coordinates, so in what follows you can assume that the coordinates θ, ϕ always remain fixed.
ii) Show that a particle initially placed at the origin (i.e. $\left.r\right|_{t=0}=0$) with zero velocity (i.e. with $\left.\frac{d r}{d t}\right|_{t=0}=0$) will always stay there.
iii) Show that particles away from $r=0$ feel a force towards larger values of r and will thus move towards the surface $r=1$.

On the surface $r=1$ the metric has a (coordinate) singularity. This surface is called the de Sitter horizon
iv) Write an expression for the the proper distance from $r=0$ to the de Sitter horizon and show that it is finite.
v) Consider a light ray emitted from $r=0$ towards the de Sitter horizon. Calculate its orbit and show that in the (t, r) coordinates the light ray never crosses the horizon.
vi) As in the case of the Schwarzschild black hole, this is somewhat misleading. Define the analogue of Eddington Finkelstein coordinates \bar{t}, r, in which the outgoing light rays (i.e. those moving towards large values of r) move along straight lines $\bar{t}-r=$ constant. Write the metric (1) in these new coordinates and show that it is smooth at $r=1$ and can be extended past this surface to $r>1$.
vii) Show that a freely falling massive particle will cross the de Sitter horizon (the surface $r=1$) in finite proper time, even though we found in v) that the coordinate time t necessary for the crossing would be infinite. This situation is very similar to the one we found in the case of the Schwarzschild black hole.
vii) Analyze the causal structure of the metric (1). This means, calculate the form of the in- and out-going lightcones, draw a spacetime diagram in the \bar{t}, r coordinates and plot qualitatively the form of the lightcones for ingoing (moving towards smaller r) and outgoing (moving towards larger r) lightrays.
viii) From this diagram, argue that the surface $r=1$ does indeed act like a horizon, that is, any object which starts in the region $r<1$ and then crosses the surface $r=1$ towards $r>1$, will never be able to come back to the region $r<1$. From the persepctive of an observer sitting at $r=0$ this object is forever lost behind the de Sitter horizon.

